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Abstract This paper presents a shape optimization problem under acoustic, aerodynamic and
geometric constraints. The acoustic specification concerns the generated sonic boom. The aim is to
see the validity of incomplete sensitivities when a nonlinear CFD model is coupled with a nonlinear
wave transport model to define pressure rise on the ground.

1. Introduction
In shape design for transonic aircraft under cruise conditions, multi-criteria aspects
mainly concern the aerodynamic and elastic characteristics of the aircraft. For instance,
the aim can be to reduce the drag at given lift and with given maximum by-section
thickness, which would ensure structural realizability. Shape optimization for civil
supersonic transport includes another main ingredient: the control of the generated
sonic boom (Whitham, 1952). This makes the problem harder than in the transonic case
as drag and sonic boom reductions are by nature incompatible (in supersonic regime
low drag geometries are sharp and have high boom level as shocks are attached then).

A large effort is currently being made on the improvement of the potential of
supersonic transport. As an example, in the United States, the DARPA Quiet
Supersonic Platform (QSP) program is directed towards development and validation of
critical technology for long-range advanced supersonic aircraft with substantially
reduced sonic boom, reduced takeoff and landing noise, and increased efficiency
relative to current generation supersonic aircraft. Improved capabilities include
supersonic flight over land without adverse sonic boom consequences with boom
overpressure rising less than 0.3 pounds per square feet (psf) (about 14 Pa), increased
unrefueled range approaching 6,000 nmi, gross take-off weight approaching 100,000 lb
(about 50 tons), increased area coverage and lower overall operational cost.

Similar efforts are taken in Europe. In France, the Committee for Scientific
Orientation for Supersonic Transport directs studies on the feasibility of the next
generation of Concorde jetliner.
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2. Sonic boom
The sound heard on the ground as a “sonic boom” is the sudden onset and release of
pressure after the buildup by the shock wave or “peak overpressure”. The change
in pressure caused by sonic boom is only a few psf – about the same pressure
change we experience on an elevator as it descends two or three floors – in a much
shorter time period. It is the magnitude of this peak overpressure that describes a
sonic boom.

There are two types of booms: N-waves and U-waves. The N-wave is generated
from steady flight conditions, and its pressure wave is shaped like the letter “N”.
N-waves have a front shock to a positive peak overpressure which is followed by a
linear decrease in the pressure until the rear shock returns to ambient pressure. The
U-wave, or focused boom, is generated from maneuvering flights, and its pressure
wave is shaped like the letter “U”. U-waves have positive shocks at the front and rear of
the boom in which the peak overpressures are increased compared to the N-wave.
Therefore, in principle, supersonic civil transport in cruise condition involves only
N-waves. And this is what we observe in the present simulations.

In all case, for today’s supersonic aircraft in normal operating conditions, the peak
overpressure varies from less than 1 to about 10 psf for an N-wave boom (15-150 Pa).
Peak overpressures for U-waves are amplified two to five times the N-wave, but this
amplified overpressure impacts only a very small area when compared to the area
exposed to the rest of the sonic boom. Therefore, shape optimization in cruise
conditions leading to a reduction of the N-wave boom is fundamental.

The intensity and width of a sonic boom path depend on the physical characteristics
of the aircraft and how it is operated. In general, the greater an aircraft’s altitude,
the lower the overpressure on the ground. Greater altitude also increases the
boom’s lateral spread, exposing a wider area to the boom. Overpressures in the sonic
boom impact area, however, will not be uniform. Boom intensity is greatest directly
under the flight path, progressively weakening with greater horizontal distance away
from the aircraft flight track. This means that the characterization of the boom can
mainly use the information along the symmetry line, along the flight path, on the
ground.

Depending on the aircraft’s altitude, sonic booms reach the ground 2-60 s after
flyover. However, not all booms are heard at ground level. The speed of sound at any
altitude is a function of air temperature. A decrease or increase in temperature results
in a corresponding decrease or increase in sound speed. Under standard atmospheric
conditions, air temperature decreases with increased altitude. This temperature
gradient helps bend the sound waves upward. Therefore, for a boom to reach the
ground, the aircraft speed relative to the ground must be greater than the speed of
sound at the ground.

3. Governing equations
The flow in the regions close to the aircraft, or the near field, is computed using the
Euler system for gas dynamics in conservation form. The solution method is based on
a finite volume Galerkin method and is described by Mohammadi (1994). The variables
at the lower boundary of this domain are then used to define waveform parameters
which are propagated to the ground using the waveform parameter method (Thomas,
1972). A schematic of the approach is shown in Figure 1.
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3.1 Waveform parameter method
To propagate the near-field perturbations to the ground, we use the waveform
propagation method (Thomas, 1972). The method is briefly described below. It is based
on the solution of three ODE for the waveform parameters mi (slope of the waveform
segment), Dpi (pressure rise across shock at the juncture of waveform segments i and
i21) and li (time duration of waveform segment i):

dmi

dt
¼ C1m2

i þ C2mi;

dDpi

dt
¼

1

2
C1Dpiðmi þ mi21Þ þ C2Dpi;

dli

dt
¼ 2

1

2
C1ðDpi þ Dpiþ1Þ2 C1mili;

where

C1 ¼
gþ 1

2g

a0

p0cn
;

C2 ¼
dW

dt
; W ¼

1

2
log

a3
0r0

c2
nA

� �
;

where subscript 0 denotes ambient quantities, W is a nondimensional quantity that
involves the speed at which a wave propagates normal to itself (cn), the ambient sound
speed (a0), wind velocities and the ray tube area (A) (with dimension in ML 22T 21).
These are given functions of altitude.

Figure 1.
Shock waves pattern and

illustration of the near
field CFD computation

domain and the
initialization of the wave
propagation method with

CFD predictions

Optimization of
supersonic civil

transports

895



The solution of this ensemble is possible if initial distributions of the quantities are
available. The initialization comes from the near field solution of the three dimensional
CFD code. More precisely, the segments in our implementation correspond to an a
priori uniform discretization along the flight path close to the symmetry plane of the
aircraft. The values of the variables for this discretization come from the near field CFD
values by interpolation. In our approach, the discretization along this path is finer than
the one used for the CFD solution.

A segment is removed when the corresponding li goes to 0. This means that the
shock has coalesced with another one. In the same way, the slope mi has to remain
positive. This implies a projection step during the integration. We made extra
hypothesis on the atmospheric distribution between flight altitude and ground, with in
particular a zero wind velocity (i.e. cn ¼ a0; a0 being the ambient sound speed).

4. CAD-free shape parameterization
We use a CAD-free control space to specify shape deformations (Mohammadi and
Pironneau, 2001). In this approach, all the nodes of the surface mesh over the shape are
control parameters. One particularity of this parameterization comes from the fact that,
unlike in a CAD-based parameter space, regularity requirements have to be specified
and handled by the user. Indeed, if the shape is described using a CAD tool and if we
use the same parameterization to specify the deformations, the two entities belong to
the same space in terms of regularity.

From a practical point of view, this inconvenience is compensated by the fact that a
CAD-based parameter space might not be suitable for optimization. In fact, our
experience shows that optimization in the CAD-free framework helps improve the CAD
definition of the shape. This is interesting as the final shape has to be expressed
through CAD in all cases. Concerning mesh dependency of the optimization, the same
remark holds when using a CAD-based parameter space. Indeed, it is obvious that the
optimization might converge to different shapes in different CAD-based parameter
spaces. Finally, new generation of CAD tools are able to fit CAD parameters into a
surface mesh if the initial correspondence between CAD parameters and surface mesh
is known. Theoretical justification for the introduction of smoothing operators for the
CAD-free parameter space comes from the consistant approximation theory (Polak,
1997).

From a mathematical point of view, the importance of a smoothing step can also be
understood by the following argument.

Suppose G is a surface in a domain V [ R 3 and suppose we want shape variations
dx [ C 1ðGÞ: From Sobolev inclusions, we know for instance that in 2d H 5=2ðGÞ ,
C 1ðGÞ: In the context of shape optimization, applying to a C 1 shape G a gradient
method does not necessarily produce a C 1(G) variation dx. Actually, in applications
with shocks the variation is rather in L 2(G) (Mohammadi and Pironneau, 2001) and
therefore we need to project the variations into H 5/2(G) for instance.

The variations (dx̃) can be projected on H m(G) by solving a PDE of order 2m on G,
such as (in 2d) u (2m)¼2dx̃.

Analysis suggests to use a fourth order operator (Mohammadi and Pironneau,
2001). From a numerical point of view, a second order elliptic system with a
discontinuity capturing operator for the definition of the viscosity gives satisfactory
results. Furthermore, it is a good idea to use an operator which leaves unchanged
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regions where the deformation is already smooth enough. Second order operators are of
course more localizing than fourth order operators.

4.1 Regularity and minimizing sequences
We give here a simple example to illustrate the loss of regularity in the construction of
minimizing sequences in infinite dimension. The loss of regularity is related to the fact
that the gradient of the functional has necessarily less regularity than the parameter.

Suppose that the functional J(x) is a quadratic function of a parameter x J ðxÞ ¼
ðAx 2 bÞ2 with x [ H 1

0ðVÞ; b [ L 2ðVÞ and A : H 1ðVÞ! L 2ðVÞ where V , {R}n:

The gradient gradx J ¼ 2ATðAx 2 bÞ [ H 21ðVÞ has less regularity than x, therefore,
an iterative scheme like the method of descent with step size r, xmþ1 2 xm ¼ 2r gradx

J ¼ 22rATðAx 2 bÞ [ V deteriorates the regularity of x. We, therefore, need to
project (engineer would say smooth) the variation into H 1(V). This situation is similar
to what happens with the CAD-free parameterization where a surface is represented by
a large number (infinite) of independent points.

Now suppose the parameter belongs to a finite dimensional parameter space, as for
instance with a polynomial definition of a surface. When we consider as parameter the
coefficient of the polynomial, changes in the polynomial coefficients do not change the
regularity as the new parameter will always belong to the same polynomial space. If
the surface is parameterized by two (or several) polynomials, we, however, need to add
regularity conditions for the junctions between the polynomials. We recover here the
link introduced by the smoothing operator between parameter coefficients. This
situation is similar to what happens with a CAD-based parameterization.

The smoothing can also be seen as a modification of the scalar product ( · ,·)0 natural
to Calculus of Variation, i.e. the scalar product of L2 by a more elaborate one, such as
(7 · ,7 · )0. It has a preconditioning effect in the sense that it dissipates localized high
frequencies. From this standpoint at the discrete level, smoothing replaces a descent
algorithm such as

j nþ1 ¼ j n 2 rðgradx j n; gradx jnÞ0

by

j nþ1 ¼ j n 2 rðgradx jn; gradx j nÞM

where M is a preconditioning matrix.
In practice, we define the following “local” smoother over the shape:

ðI 2 1ðd~xÞDÞd~x ¼ dx; ð4:1Þ

d~x ¼ 0 on constrained frontiers;

where dx̃ is the smoothed shape variation for the shape nodes and dx is the variation
given by the optimization tool. This system is solved iteratively and 1 is set to 0 if

dijðd~xÞ

ðd~xÞT

, 1023; ð4:2Þ

where dij(dx̃) is the difference between the variations of the two nodes of each segment
of a surface triangle and (dx̃)T the mean variation on this triangle.
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Once (dx̃) is known, we have to spread these variations over the mesh. Several
algorithms are available for this task. We require the deformation method to preserve
the positivity and orientation of the elements. In particular, we use a pseudo-elasticity
algorithm combining compression and torsion springs (Farhat et al., 1998).

5. Gradient evaluation
We consider two types of functionals: those using shape based information and those
involving informations away from the shape. Examples of these are given by, for the
first type, aerodynamic coefficients such as lift and drag coefficients or geometric
quantities such as the volume and the maximum by-section thickness of the aircraft
and for the former type the sonic boom defined by ground pressure signature.

There is a major difference between these two classes concerning the evaluation of
sensitivities. Indeed, we will see that the first class is suitable for the use of the
so-called incomplete sensitivity technique while a functional involving information on
the ground requires the linearization of state equations.

5.1 Incomplete sensitivities
One of the main purposes of this paper is to see if we can use, for sonic boom reduction,
a redefinition of the cost function compatible with incomplete sensitivity evaluations.
Indeed, in the past we have applied this approximation to functionals involving
aerodynamic coefficients. The redefinition is designed to be only used for sensitivity
evaluation.

We recall briefly the incomplete sensitivity approach. Consider a general simulation
loop linking the control parameter x to a functional J:

J ðxÞ : x ! qðxÞ! U ðqðxÞÞ! J ðx; qðxÞ;U ðqðxÞÞÞ; ð5:1Þ

where q represents all geometrical entities and U all state related variables. The
gradient of J with respect to x is:

dJ

dx
¼

›J

›x
þ

›J

›q

›q

›x
þ

›J

›U

›U

›x
: ð5:2Þ

The major part of the cost of this evaluation is due to ›U/›x in the last term.
Consider the following context for shape optimization:
. both the cost function and control space are defined on the shape (or on some part

of it);
. J is of the form

J ðxÞ ¼

Z
shape

f ðxÞgðU Þ dg;

. the local curvature of the shape is not too large (this needs to be quantified for
each cases, for a wing typically we consider regions away from leading and
trailing edges).

If these requirements hold, we can use an incomplete evaluation of this gradient,
neglecting the sensitivity with respect to the state in (5.2). This does not mean that a
precise evaluation of the state is not necessary, but that for a small change in the shape
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the state will remain almost unchanged, while geometrical quantities have variations
of the same order as the shape variation.

5.1.1 Illustrations of incomplete sensitivities. A first simple example concerns the
application of the incomplete sensitivity technique to the evaluation of the sensitivity
of functionals involving the solution of the following Burger equation:

ut þ 0:5ðu 2Þx ¼ mxu; on �a; 1½; uðaÞ ¼ 1; uð1Þ ¼ 20:8: ð5:3Þ

We consider the steady solution of equation (5.3) and take the left hand side frontier a
as control parameter. Suppose the functional is J ðaÞ ¼ auxðaÞ; the gradient is given by

JaðaÞ ¼ uxðaÞ þ auxaðaÞ:

We are in the validity domain for incomplete sensitivities. Without computing the
solution, it is clear from the equation that in regions where the solution is regular
ux ¼ mx: The exact gradient is therefore JaðaÞ ¼ ma þ am to be compared with the
incomplete gradient ma. We see that the sign of the incomplete gradient is always
correct and there is only a factor of 2 missing; something which is not important when
using an optimal descent step size in minimization. Obviously, the condition for this
analysis to hold for any functional of the form f(a)g(u) where u is the solution of
equation (5.3) is that there exists 1 . 0 such that ðlog ðgÞÞa ¼ 1ðlog ð f ÞÞa: Something
we can verify a priori before using the incomplete sensitivity in optimization. Other
analytical examples of the comparison of incomplete and exact sensitivities are shown
by Mohammadi and Pironneau (2001).

Another interesting example is to consider the sensitivity analysis for an expression
of the form pðxÞu1nðxÞ with respect to a parameterization x (for sake of simplicity, we
formally consider the case of scalar quantities). This expression appears in the
definition of the aerodynamic drag coefficient for instance. Suppose the pressure is
given by the Newton formula p ¼ p1ðu1nÞ2: We, therefore, have pu1n ¼ p1ðu1nÞ3:
The gradient of this expression with respect to x is:

dðpu1nÞ

dx
¼ ðpu1Þ

dn

dx
þ

dp

dx
ðu1nÞ ¼ 3p1u1ðu1nÞ2

dn

dx
:

On the other hand, the incomplete sensitivity is given by:

dðpu1nÞ

dx
¼ ðpu1Þ

dn

dx
¼ p1u1ðu1nÞ2 dn

dx
:

We see that the two gradients have the same sign and that there is a factor of 3 missing
in the incomplete sensitivity. From a fluid dynamic point of view, this is a worst case as
we know that small changes in the geometry in high curvature area where the Newton
model is valid (leading edges for instance) have important effects on the flow, much
more than changes in area where the shape is flat.

The above expression can be rewritten as

pu1n ¼ pju1j cos
u1

ju1j
n

� �
:

The incomplete gradient is therefore
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pðu1nÞx ¼ 2pju1j sin
u1

ju1j
n

� �
¼ 0

when n is aligned with u1. The incomplete sensitivity fails therefore for these area (e.g.
area near the leading edge for instance for an airfoil at no incidence). In the same way, if
we were interested by the evaluation of the lift sensitivity, the incomplete sensitivity
would be wrong where n is close to u’

1 (e.g. along the intrados and extrados of an airfoil
at no incidence). This means that the incomplete sensitivity is not suitable for lift
sensitivity evaluation, except if the deformation is along the normal to the shape as in
that case the ð›p=›n ¼ 0Þ boundary condition would imply that the incomplete and
exact gradients are the same. This is also why we advocate the use of deformations
normal to the wall as parameterization through a CAD-free framework. Below, we
reconsider this analysis for the sensitivity of sonic boom with respect to the shape.

5.2 Reduced complexity models and incomplete sensitivities
One way to cheaply improve the incomplete evaluation of sensitivities is to use
the linearization of reduced complexity models to approximate the last term in
equation (5.2). In other words, consider the following reduced model for the definition
of ~UðxÞ , U ðqðxÞ: Suppose for instance Ũ is the Newton formula for the pressure and
U the pressure from the Euler system. Consider the following approximate simulation
loop:

x ! qðxÞ! ~UðxÞ
U ðqðxÞ
~UðxÞ

� �
: ð5:4Þ

The incomplete gradient of J with respect to x can be improved by evaluating the last
term in equation (5.2), linearizing equation (5.4) instead of equation (5.1), and by
freezing U= ~U:

dJ

dx
,

›J ðU Þ

›x
þ

›J ðU Þ

›q

›q

›x
þ

›J ðU Þ

›U

› ~U

›x

U ðqðxÞ
~UðxÞ

: ð5:5Þ

ðx ! ~UÞ model is only used in the definition of the gradient and not the state. The
reduced model needs to be valid only over the support of the control parameters.

A simple example shows the importance of the scaling introduced in equation (5.4).
Consider U ¼ log ð1 þ xÞ scalar for simplicity and J ¼ U 2 with dJ=dx ¼ 2UU 0 ¼
2 log ð1 þ xÞ=ð1 þ xÞ , 2 log ð1 þ xÞð1 2 x þ x 2. . .Þ and consider ~U ¼ x as the reduced
complexity model, valid around x ¼ 0: Without the scaling factor incomplete
sensitivity gives J 0 , 2U ~U0 ¼ 2 log ð1 þ xÞ while after introducing the local correction
J 0 , 2U ~U0ðU= ~UÞ ¼ 2 log ð1 þ xÞðlog ð1 þ xÞ=xÞ , 2 log ð1 þ xÞð1 2 x=2 þ x 2=3. . .Þ:
Here the scaling is taken linear in U but higher order approximations can be introduced
as well.

5.3 Sensitivity of sonic boom to the near field pressure
Consider the simulation loop for the calculation of a cost function to measure the sonic
boom for a given parameterization x of the shape:

BðxÞ : x ! qðxÞ! pH ! pgðpH ; atmosphere prop:Þ! BðpgÞ;
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where pH is the near field pressure distribution at altitude H which is a function of the
state variables (solution of the Euler equations) and pg solution of the waveform
propagation method on the ground.

The gradient of B with respect to x requires the linearization of the different
operators involved:

dB

dx
¼

›B

›pg

›pg

›pH

›pH

›q

›q

›x
: ð5:6Þ

This evaluation is of course expensive when the dimension of the control space is large.
Usually an adjoint approach is used to make the cost of the evaluation independent of
the size of the control space (Alonso et al., 2002; Mohammadi and Pironneau, 2001).
This is performed in particular in the case of steady flows where the storage of
intermediate states is not required and the adjoint is developed around the
steady-solution. This can be performed in both continuous or discrete forms using
automatic differentiation (AD).

In the context of sonic boom evaluation using the waveform propagation method,
due to coalescing shocks, one would prefer to perform the adjoint development in the
discrete and not continuous level using automatic differentiation in reverse mode.
Indeed, the non-differentiability of some operators involved and the presence of
discontinuity are naturally taken into account in this approach. This is because in
discrete form a discontinuity is always represented by a continuous function. In any
event, it would be necessary to save all intermediate solutions of the waveform
parameter method between the flight altitude and the ground to be able to integrate
backward for the adjoint using the reverse mode of automatic differentiation (Faure,
1996; Gilbert et al., 1991; Griewank, 2001; Mohammadi and Pironneau, 2001; Rostaing
et al., 1993).

Sonic boom can be monitored by minimizing, for instance, one of the following
functionals:

Bmin ¼
I ðpgÞ2 aI ðp0

gÞ

I p0
g

� �
0
@

1
A

2

; I ¼

Z
ground

jDpgjdg; ð5:7Þ

with 0 , a , 1 and p0
g the pressure signature on the ground for the original shape and

Binv ¼ a

Z
ground

pg 2 ptarget
g

� �2

dgþ b

Z
ground

pg 2 ptarget
g

� �d
dg; a . 0; b . 0;

aþ b ¼ 1:

where ptarget
g is a user specified target pressure distribution on the ground. But the

target pressure might be unrealizable and the optimization problem without solution.
Bmin is a measure of the pressure jumps accumulation on the ground and the aim is

to reduce these jumps. a cannot be 0 as we cannot completely remove the boom.
On the other hand, by minimizing Binv, we realize a target pressure signature on the

ground having less boom. In Binv, the second integral in the cost function is used to
avoid the functional being flat close to the minimum. 0 , d , 1 is also an optimization
parameter and has to be chosen. In this work, we consider d ¼ 0:3: We studied the
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importance of such functionals in the work of Cabot and Mohammadi (2002) and
Mohammadi and Saiac (2002) for a model problem.

The difficulty with Binv is that the prescribed ground pressure might not be
associated to a feasible flow field while Bmin does not involve an a priori ground
pressure distribution. In addition, we will see that ›Bmin/›pH is less sensitive to
discrepancies in the near-field flow prediction, due for instance to the mesh quality.

We show the sensitivity of these functionals with respect to the close field pressure
distribution in Figure 2.

Once ›B/›pH is computed (for either Bmin or Binv, Figure 3), we evaluate its product
with the operator ›pH/›x. This latter evaluation requires the linearization of the Euler
system which we would like to avoid. We have two alternatives:

. to use reduced complexity models for sensitivity analysis; and

. to redefine the functional and adapt the problem to the context of incomplete
sensitivities.

5.3.1 Reduced complexity models. The first approach to reduce the complexity of the
sensitivity analysis is to replace, only for sensitivity analysis, the Euler system by the
waveform propagation method, propagating the wall pressure distribution ( px)
directly to the ground (instead of just from altitude H). We insist on the fact that px is
solution of the Euler system:

x ! qðxÞ! px ! pg:

To compute dpg/dx we need finally to find an approximation linking px and the shape x
to be used in the linearization (instead of the Euler system). For inviscid flows, in
regions of high curvature, a good approximation is given by the Newton formula for

Figure 2.
›Binv/›pH and ›Bmin/›pH

superposed on the
near-field pressure
distribution. ›Binv/›pH

is rather smooth while
›Bmin/›pH vanishes almost
everywhere and only
contains Diracs
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the pressure distribution over walls. We account therefore only for the effect of the
pressure distribution on the shape on the near field pressure signature. We have to
account therefore for the part of the boom coming from the shocks away from the wall.
We will see that, by keeping the shocks bow (by opposition to attached) and the leading
edges as smooth or rounded (by opposition to sharp) as possible, this requirement is
satisfied.

6. Cost function definition
The functionals Bmin and Binv accounting for the sonic boom have been introduced
above. In this work, we also consider constraints on aerodynamic coefficients as well as
geometric characteristics of the aircraft.

More precisely, we consider the problem of drag (Cd) minimization with constraints
on the lift (C l ), volume (V) and maximum by-section thickness (d ) defined for each
node. In our approach, the mesh is unstructured and the surface mesh is made of
triangles. In the by-section definition of the shape the number of sections is arbitrary
and depends on the complexity of the geometry. The sections are obtained by
intersecting vertical planes with the shape. The maximum thickness d of each section
is evaluated. Then, each node in the surface mesh is associated with two sections and
linear interpolation is used to define the maximum by-section thickness associated this
node (Figure 4). The cost function is given by:

J ðxÞ ¼ jCd 2 Cdes
d j þ C 0

l 2 C l

� �
þ
þðV 0 2 V Þþ þ

Z
shape

jd 2 d0jdgþ BðxÞ:

Notation 0 denotes initial shape values. Cdes
d # C0

d is the target value for the drag
coefficient. B(x) is either Bmin or Binv from (5.7). ð · Þþ ¼ maxrð0; :Þ where maxr is a
regularized max. The aim is to avoid the volume and lift coefficient from decreasing.

Figure 3.
›Bmin/›pH (left) and

›Binv/›pH (right) based on
two cross-sections close

(plane curves) and far
(dashed curves) from the

aircraft
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In addition to the given lift constraint expressed in the cost function by penalty, we use
the inflow incidence to enforce the given lift constraint. We know that in cruise
condition (far from stall), the lift is linear with respect to the angle of incidence. During
optimization the incidence follows the following equation: unþ1 ¼ un 2 0:5ðC n

l 2 C 0
l Þ;

u 0 ¼ 0; where n is the optimization iteration.

6.1 Redefinition of J for incomplete sensitivity evaluation
We said that a cost function based on information away from the wall is not suitable
for incomplete sensitivity evaluation. In particular, since Binv and Bmin are defined on
the ground and not on the shape, we propose a reformulation of the functional linking
the pressure signature on the ground to wall-based quantities. This is done together
with the use of the waveform propagation method for the evaluation of ›pg=›x as seen
above.

We think that bow shocks introduce less pressure jump than attached shocks. Bow
shocks are usually associated with smooth geometries. On the other hand, shape
optimization based on drag reduction in supersonic regime leads to sharp leading
edges. Therefore, to avoid an increase in the boom, it is important to keep the leading
edges of the aircraft smooth while doing drag reduction. We introduce the following
requirements.

. Specify that the wall near leading edges has to remain smooth. This is monitored
through the smoother in the CAD-free framework seen above.

. Ask for the local drag force Cloc
d due to the leading edge regions to remain

unchanged or to increase while the global drag force decreases.

The cost function becomes therefore:

Figure 4.
By-section definition of the
shape used to enforce the
maximum by-section
thickness constraint for
the original and optimized
aircraft
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~JðxÞ ¼ jCd 2 Cdes
d j þ C0

l 2 Cl

� �
þ
þðV 0 2 V Þþ þ

Z
shape

jd 2 d 0jdg

þ Cloc
d

� �0

2 Cloc
d

� �� �
þ

;

where C loc
d is the measure of the drag force over regions where ~n · ~u1 , 0 ð~n being the

local outward normal to the shape). Introducing a differentiable localization function f
(s +) such that ð0 # f ðsþÞ # 1Þ; Cloc

d is defined as:

Cloc
d ¼

2

r1j~u1j
2

Z
shape

p · ~n · ~u1f ðsþÞ dG; sþ ¼
~n · ~u1

j~n · ~u1j
:

This differentiable localization term is used to avoid non-differentiability for Cloc
d and

to allow for integration over the whole shape.
In addition to the previous modification of the functional, we introduce regularity

requirements for areas where ðf ðsþÞ – 0Þ: This is monitored through the smoothing
operator available in the CAD-free parameterization.

7. Full aircraft optimization
We consider a supersonic business jet geometry provided by Dassault Aviation
company (Figures 5 and 6). The cruise speed is Mach 1.8 at zero incidence and the
flight altitude is 55,000 ft. The results show the performance of the optimization
method including the validity of the incomplete sensitivity approach and the
reformulation of the functional we use for this configuration.

Figure 5.
Upper and side views of

the SSBJ discretization, all
these nodes are control

parameters
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We performed 1,000 steepest descent minimization iterations. At each iteration, an
incomplete evaluation of the state (ten explicit Runge-Kutta iterations of the Euler
solver) is performed. The global cost of this optimization is comparable to one flow
analysis with this code (about 10,000 explicit RK iterations) and takes about 4 h on a
1 GHz PC with 500 Mb RAM. The extra cost in optimization compared to pure
simulation due to incomplete sensitivity analysis, shape and mesh deformation,
minimization algorithm, etc. is negligible. In Figure 7, we show a cross-section of the

Figure 7.
Cross-section of the
near-field CFD pressure
variations ( p 2 p1/p1) in
the symmetry plane (left)
and the corresponding
ground pressure
signatures (right) for the
initial (dashed curves) and
optimized (continuous
curves) shapes

Figure 6.
Partial view of the CFD
mesh in the symmetry
plane
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close field CFD pressure signature close to the aircraft in the symmetry plane and the
ground pressure signature for the initial and optimized shapes. Figure 8 shows upper
and lateral views of aircraft surface iso-Mach contours. Figure 9 shows iso-contours of
normal deformations with respect to the original shape. During optimization, the drag
has been reduced by 20 percent while the lift has been increased by 10 percent.
Geometric constraint on the volume and maximum cross-section thickness has been
satisfied and the value of C loc

d maintained (Figure 10).

8. Concluding remarks
Shape optimization in a CAD-free framework using incomplete state and gradient
evaluations has been presented for a multi-criteria optimization problem involving
requirements on the acoustic, aerodynamic and geometric characteristics of jetliners. It
has been shown that this platform is suitable for such a realistic design and that the
complexities of the optimization and simulation are now comparable. In particular, it
has been shown that incomplete sensitivities give satisfactory results after a
reformulation of the cost functional. This enables a better understanding of sonic boom

Figure 8.
Upper: near-field iso-Mach
contours for the initial and

optimized aircraft in the
symmetry plane. Lower:
Upper surface iso-Mach

contours for the initial and
optimized aircraft

Figure 9.
Iso-contours of normal

deformation with respect
to the original shape
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origins and mechanisms, and provides useful input to the design of future supersonic
civil transports with a controlled boom and reduced drag. In addition, this approach is
suitable in the context of black-box commercial simulation softwares as no
linearization is required for the state equation.
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